A comparative study of crossover in differential evolution
نویسندگان
چکیده
In order to understand the role of crossover in differential evolution, theoretical analysis and comparative study of crossover in differential evolution are presented in this paper. Two new crossover methods, namely consecutive binomial crossover and non-consecutive exponential crossover, are designed. The probability distribution and expectation of crossover length for binomial and exponential crossover used in this paper are derived. Various differential evolution algorithms with different crossover methods including mutation-only differential evolution are comprehensively compared at system level instead of parameter level. Based on the theoretical analysis and simulation results, the effect of crossover on the reliability and efficiency of differential evolution algorithms is discussed. Some insights are revealed.
منابع مشابه
A Comparative Analysis of Crossover Variants in Differential Evolution
This paper presents a comparative analysis of binomial and exponential crossover in differential evolution. Some theoretical results concerning the probabilities of mutating an arbitrary component and that of mutating a given number of components are obtained for both crossover variants. The differences between binomial and exponential crossover are identified and the impact of these results on...
متن کاملA Comparative Study of Four Evolutionary Algorithms for Economic and Economic-Statistical Designs of MEWMA Control Charts
The multivariate exponentially weighted moving average (MEWMA) control chart is one of the best statistical control chart that are usually used to detect simultaneous small deviations on the mean of more than one cross-correlated quality characteristics. The economic design of MEWMA control charts involves solving a combinatorial optimization model that is composed of a nonlinear cost function ...
متن کاملA Comparative Study on the Different Process of Mutation of Differential Evolution
Differential evolution (DE) is arguably one of the most powerful stochastic real-parameter optimization algorithms in current use. DE operates through similar computational steps as employed by a standard evolutionary algorithm (EA). Over the last few decades, a number of Differential Evolution (DE) algorithms have been proposed with excellent performance on mathematical benchmarks. However, li...
متن کاملPareto Optimal Balancing of Four-bar Mechanisms Using Multi-Objective Differential Evolution Algorithm
Four-bar mechanisms are widely used in the industry especially in rotary engines. These mechanisms are usually applied for attaining a special motion duty like path generation; their high speeds in the industry cause an unbalancing problem. Hence, dynamic balancing is essential for their greater efficiency. In this research study, a multi-objective differential evolution algorithm is used for P...
متن کاملWell Placement Optimization Using Differential Evolution Algorithm
Determining the optimal location of wells with the aid of an automated search algorithm is a significant and difficult step in the reservoir development process. It is a computationally intensive task due to the large number of simulation runs required. Therefore,the key issue to such automatic optimization is development of algorithms that can find acceptable solutions with a minimum numbe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Heuristics
دوره 17 شماره
صفحات -
تاریخ انتشار 2011